Бьерн Страуструп - Язык программирования С++. Главы 2-4 - Анализатор
ОГЛАВЛЕНИЕ
3.1.1 Анализатор
Грамматика языка калькулятора определяется следующими правилами:
программа:
END // END - это конец ввода
список-выражений END
список-выражений:
выражение PRINT // PRINT - это '\n' или ';'
выражение PRINT список-выражений
выражение:
выражение + терм
выражение - терм
терм
терм:
терм / первичное
терм * первичное
первичное
первичное:
NUMBER // число с плавающей запятой в С++
NAME // имя в языке С++ за исключением '_'
NAME = выражение
- первичное
( выражение )
Иными словами, программа есть последовательность строк, а каждая строка содержит одно или несколько выражений, разделенных точкой с запятой. Основные элементы выражения - это числа, имена и операции *, /, +, - (унарный и бинарный минус) и =. Имена необязательно описывать до использования.
Для синтаксического анализа используется метод, обычно называемый рекурсивным спуском. Это распространенный и достаточно очевидный метод. В таких языках как С++, то есть в которых операция вызова не сопряжена с большими накладными расходами, это метод эффективен. Для каждого правила грамматики имеется своя функция, которая вызывает другие функции. Терминальные символы (например, END, NUMBER, + и -) распознаются лексическим анализатором get_token(). Нетерминальные символы распознаются функциями синтаксического анализатора expr(), term() и prim(). Как только оба операнда выражения или подвыражения стали известны, оно вычисляется. В настоящем трансляторе в этот момент создаются команды, вычисляющие выражение.
Анализатор использует для ввода функцию get_token(). Значение последнего вызова get_token() хранится в глобальной переменной curr_tok. Переменная curr_tok принимает значения элементов перечисления
token_value:
enum token_value {
NAME, NUMBER, END,
PLUS='+', MINUS='-', MUL='*', DIV='/',
PRINT=';', ASSIGN='=', LP='(', RP=')'
};
token_value curr_tok;
Для всех функций анализатора предполагается, что get_token() уже была вызвана, и поэтому в curr_tok хранится следующая лексема, подлежащая анализу. Это позволяет анализатору заглядывать на одну лексему вперед. Каждая функция анализатора всегда читает на одну лексему больше, чем нужно для распознавания того правила, для которого она вызывалась. Каждая функция анализатора вычисляет
"свое" выражение и возвращает его результат. Функция expr() обрабатывает сложение и вычитание. Она состоит из одного цикла, в котором распознанные термы складываются или вычитаются:
double expr() // складывает и вычитает
{
double left = term();
for(;;) // ``вечно''
switch(curr_tok) {
case PLUS:
get_token(); // случай '+'
left += term();
break;
case MINUS:
get_token(); // случай '-'
left -= term();
break;
default:
return left;
}
}
Сама по себе эта функция делает немного. Как принято в высокоуровневых функциях больших программ, она выполняет задание, вызывая другие функции. Отметим, что выражения вида 2-3+4
вычисляются как (2-3)+4, что предопределяется правилами грамматики. Непривычная запись for(;;) - это стандартный способ задания бесконечного цикла, и его можно обозначить словом "вечно". Это вырожденная форма оператора for, и альтернативой ей может служить оператор while(1). Оператор switch выполняется повторно до тех пор, пока не перестанут появляться операции + или - , а тогда по умолчанию выполняется оператор return (default).
Операции += и -= используются для выполнения операций сложения и вычитания. Можно написать эквивалентные присваивания: left=left+term() и
left=left-term(). Однако вариант left+=term() и left-=term() не только короче, но и более четко определяет требуемое действие. Для бинарной операции @ выражение x@=y означает x=x@y, за исключением того, что x
вычисляется только один раз. Это применимо к бинарным операциям:
+ - * / % & | ^ << >>
поэтому возможны следующие операции присваивания:
+= -= *= /= %= &= |= ^= <<= >>=
Каждая операция является отдельной лексемой, поэтому a + =1 содержит синтаксическую ошибку (из-за пробела между + и =). Расшифровка операций следующая: % - взятие остатка, &, | и ^ - разрядные логические операции И, ИЛИ и Исключающее ИЛИ; << и >> сдвиг влево и сдвиг вправо. Функции term() и get_token() должны быть описаны до определения expr(). В главе 4 рассматривается построение программы в виде совокупности файлов. За одним исключением, все программы калькулятора можно составить так, чтобы в них все объекты описывались только один раз и до их использования. Исключением является функция expr(), которая вызывает функцию term(), а она, в свою очередь, вызывает prim(), и уже та, наконец, вызывает expr(). Этот цикл необходимо как-то разорвать, для чего вполне подходит заданное до определения prim() описание:
double expr(); // это описание необходимо
Функция term() справляется с умножением и делением аналогично тому, как функция expr() со сложением и вычитанием:
double term() // умножает и складывает
{
double left = prim();
for(;;)
switch(curr_tok) {
case MUL:
get_token(); // случай '*'
left *= prim();
break;
case DIV:
get_token(); // случай '/'
double d = prim();
if (d == 0) return error("деление на 0");
left /= d;
break;
default:
return left;
}
}
Проверка отсутствия деления на нуль необходима, поскольку результат деления на нуль неопределен и, как правило, приводит к катастрофе. Функция error() будет рассмотрена позже. Переменная d появляется в программе там, где она действительно нужна, и сразу же инициализируется. Во многих языках описание может находиться только в начале блока. Но такое ограничение может искажать естественную структуру программы и способствовать появлению ошибок. Чаще всего не инициализированные локальные переменные свидетельствуют о плохом стиле программирования. Исключение составляют те переменные, которые инициализируются операторами ввода, и переменные типа массива или структуры, для которых нет традиционной инициализации с помощью одиночных присваиваний. Следует напомнить, что =
является операцией присваивания, тогда как == есть операция сравнения.
Функция prim, обрабатывающая первичное, во многом похожа на функции expr и term(). Но раз мы дошли до низа в иерархии вызовов, то в ней кое-что придется сделать. Цикл для нее не нужен:
double number_value;
char name_string[256];
double prim() // обрабатывает первичное
{
switch (curr_tok) {
case NUMBER: // константа с плавающей точкой
get_token();
return number_value;
case NAME:
if (get_token() == ASSIGN) {
name* n = insert(name_string);
get_token();
n->value = expr();
return n->value;
}
return look(name_string)->value;
case MINUS: // унарный минус
get_token();
return -prim();
case LP:
get_token();
double e = expr();
if (curr_tok != RP) return error("требуется )");
get_token();
return e;
case END:
return 1;
default:
return error("требуется первичное");
}
}
Когда появляется NUMBER (то есть константа с плавающей точкой), возвращается ее значение. Функция ввода get_token() помещает значение константы в глобальную переменную number_value. Если в программе используются глобальные переменные, то часто это указывает на то, что структура не до конца проработана, и поэтому требуется некоторая оптимизация. Именно так обстоит дело в данном случае. В идеале лексема должна состоять из двух частей: значения, определяющего вид лексемы (в данной программе это token_value), и (если необходимо) собственно значения лексемы. Здесь же имеется только одна простая переменная
curr_tok, поэтому для хранения последнего прочитанного значения NUMBER требуется глобальная переменная number_value. Такое решение проходит потому, что калькулятор во всех вычислениях вначале выбирает одно число, а затем считывает другое из входного потока. В качестве упражнения предлагается избавиться от этой излишней глобальной переменной ($$3.5 [15]).
Если последнее значение NUMBER хранится в глобальной переменной number_value, то строковое представление последнего значения NAME хранится в name_string. Перед тем, как что-либо делать с именем, калькулятор должен заглянуть вперед, чтобы выяснить, будет ли ему присваиваться значение, или же будет только использоваться существующее его значение. В обоих случаях надо обратиться к таблице имен. Эта таблица рассматривается в $$3.1.3; а здесь достаточно только знать, что она состоит из записей, имеющих вид:
struct name {
char* string;
name* next;
double value;
};
Член next используется только служебными функциями, работающими с таблицей:
name* look(const char*);
name* insert(const char*);
Обе функции возвращают указатель на ту запись name, которая соответствует их параметру-строке. Функция look() "ругается", если имя не было занесено в таблицу. Это означает, что в калькуляторе можно использовать имя без предварительного описания, но в первый раз оно может появиться только в левой части присваивания.