Реляционная алгебра - Декартово произведение
ОГЛАВЛЕНИЕ
Декартово произведение
Определение 5: Декартовым произведением двух отношений и называется отношение, заголовок которого является сцеплением заголовков отношений и :
,
а тело состоит из кортежей, являющихся сцеплением кортежей отношений и :
, таких, что , .
Синтаксис операции декартового произведения:
Замечание. Мощность произведения равна произведению мощностей отношений и , т.к. каждый кортеж отношения соединяется с каждым кортежем отношения .
Замечание. Если в отношения и имеются атрибуты с одинаковыми наименованиями, то перед выполнением операции декартового произведения такие атрибуты необходимо переименовать.
Замечание. Перемножать можно любые два отношения, совместимость по типу при этом не требуется.
Пример 5. Пусть даны два отношения и с информацией о поставщиках и деталях:
Номер поставщика | Наименование поставщика |
---|---|
1 | Иванов |
2 | Петров |
3 | Сидоров |
Таблица 6. Отношение A (Поставщики)
Номер детали | Наименование детали |
---|---|
1 | Болт |
2 | Гайка |
3 | Винт |
Таблица 7. Отношение B (Детали)
Декартово произведение отношений и будет иметь вид:
Номер поставщика | Наименование поставщика | Номер детали | Наименование детали |
---|---|---|---|
1 | Иванов | 1 | Болт |
1 | Иванов | 2 | Гайка |
1 | Иванов | 3 | Винт |
2 | Петров | 1 | Болт |
2 | Петров | 2 | Гайка |
2 | Петров | 3 | Винт |
3 | Сидоров | 1 | Болт |
3 | Сидоров | 2 | Гайка |
3 | Сидоров | 3 | Винт |
Таблица 8. Отношение A TIMES B
Замечание. Сама по себе операция декартового произведения не очень важна, т.к. она не дает никакой новой информации, по сравнению с исходными отношениями. Для реальных запросов эта операция почти никогда не используется. Однако операция декартового произведения важна для выполнения специальных реляционных операций, о которых речь пойдет ниже.